BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era

439

Composition Parsing: Office Space Planning

and Automation as Translator

CHARLES DRIESLER
Pratt Institute

The ability to synthesize design intent with computable
values generates a novel method for composing space.
An intermediary automated layer, between designer and
their computational tools, is proposed and implemented
for the space planning problem of the office test fit. This
system for composition parsing, when given a combination
of explicit or gestural inputs, will reduce them to a collec-
tion of small and simple problems. A reductive approach
allows the system to deliver computationally easy requests
to existing systems, interpret the results, and reconstruct
a comprehensible output for the user. By focusing on the
ability to translate disjoint compositional understandings of
a given space, the system does not need to enforce a certain
geometric construction of the problem or prepare layers of
contingency for harder cases. It must only maintain the abil-
ity to translate between the people and systems that do. The
paper opens with an investigation of how recently published
algorithms interpret the composition of their given space
planning target and how their implementations approach
the question of user interactivity. It then outlines the three
phases of the proposed system before concluding with an
evaluation of its results and limitations. The paper ends with
speculation on necessary steps for the next generation of
this strategy and on future forms of user intervention with
otherwise fully automated results.

INTRODUCTION: OFFICE SPACE PLANNING

The architectural computation arena has recently renewed
its interest in the space planning problem of the office inte-
rior test fit: the maximal placement of bodies and furniture
given an empty floor plan and a client’s programmatic needs.
The problem is a clear target given the relative low resolution
of its solution space when compared to larger tabula rasa
architectural projects. The test fit’s slate, while empty, is not
blank; its constraints (floor area, geometry, site, orientation,
programming requirements) are almost totally inherited, and
their common parameters (desk size, placement affinities,
population configurations) are necessarily tested only within
a small range of acceptable values. In short, the office test
fit is a popular target because it seems that it can be simpli-
fied for problem areas automation is good at: geometric and
numerical relationships. Many of the latest advancements
then frame their success criteria around questions like “How
many more desks were we able to fit than other manual
designs?” and “What is the strength of this configuration
when considering daylighting, adjacency, and density?” or any
other number of performance metrics. Consistently, projects

are evaluated based on output provided by automation with-
outimposing or allowing for an interpretation of the problem
by the designer. Said another way, these systems play a game
based on their specific understanding of the space planning
problem and reduce the designer to a bookend: someone to
input values at the start and to select a result at the end.

This comes at a moment when the industry is reconsidering
its relationship with technology.! In divorcing the designer
from the processes of designing, each tool is also restrict-
ing its relevance to a subset of office types; the character,
or composition, of the problems solved must be similar (and,
often, rectangular). To allow for more robust systems and
to enable a greater level of interactivity between designer
and automation, this research proposes splitting the current
popular methodology into two phases. This first step is an
initial composition parsing of the space planning problem
as-proposed. The process “reads” given constraints and
translates an interpretation of the floor plan and program
requirements into a collection of smaller geometric prob-
lems. Then, second, the system will match these smaller
problems to both novel and existing population strategies
in the same camp as those mentioned above. The network
relationships established in the first phase are maintained as
the smaller problems are solved in isolation. This implemen-
tation is an engine for the persistent translation of automated
compositional understanding. It negotiates shortcomings of
purely geometric population strategies by simultaneously
maintaining design intent and converting into simple rela-
tionships between numbers and shapes. As an intermediary
layer between designer and computation, the system prom-
ises a form of automated design that can build on the many
strengths of existing algorithms and allow for user interven-
tion when necessary.

DERIVING THE COMPOSITION PROBLEM

The following systems, while built around a divorced rela-
tionship with the designer, do so consciously and offer
sophisticated results in return. To be clear, this paper is not a
critique of the logic or methodology in other similar projects.
Development began with an audit of limitations in black box
style systems (that treat designers as choosers), though, and
observations on the projects below acted as precedent for
the proposed solutions. This project, in addition to generating
useful output, aims to provide greater piecemeal interactivity
between the user and the system. This sentiment is often also
expressed by the papers cited. The Anderson paper’s abstract

440

Composition Parsing: Office Space Planning and Automation as Translator

i ’ ey 4
c Ag@: interior profile Be@: program bounds r— —a 3 '
ft Ae1l: core profile 2 B@1: access direction | o | -~ - 5
o AG2: other exemptions © BO2: quota U ro 7 >0

& o 4 » (XS

5 Ae3: structure ¥ B@3: priority) SO
(= Ae4: circulation = B@4: enclosed? | |
o a) x60
& A@S: core access BOS: drawing geometry L — e MAX x15 x60

Figure 1. Required geometric input for both the floor plan and program requirements. The results of this configuration are also shown on the right.

specifically mentions that they hope for “a more dynamicand
collaborative interaction between computer design software
and human designers in the future.”? Disclaimers aside, the
next section evaluates three recently published systems for
their degree of interactivity and suggests moments in their
structure that may be responsible. Alternative strategies for
both how composition can be translated and why it should be
considered a computational problem are offered in response.

WeWork’s 2018 desk layout generator will output several
configurations of desks for a single given room. Multiple
options are rapidly generated, and then the user is asked to
make a final decision on which layout to implement. While
the WeWork team developed a sophisticated model to
evaluate the success of their program’s result against sev-
eral existing designs and criteria, a potential corollary for
compositional understanding, they chose to defer to the
user’s final judgement. This is justified by a comparative
study that found the system “matched the efficiency of the
architects on 77% of offices, and achieved a higher efficiency
6% of the time.” By other metrics, the system “achieved a
97% match rate,” meaning it “completed this design task as
well as a designer and in a shorter time.” After creating the
opportunity to let machine preference supersede a human’s,
chooses to reinforce the designer’s contemporary position as
chooser. Further development after publication has priori-
tized deploying the algorithm to larger problems instead of
reconfiguring this interaction paradigm, suggesting a belief
that “just choosing” is a sufficiently useful form of interaction.

Autodesk’s 2016 space plan generator similarly focuses on
rapid option output, but it also immediately reduces the pro-
grammatic requirements to a pixelated geometric model of

subdivision based on linear slices. This method is computa-
tionally useful, but it also restricts any solution’s relevance to
a subset of the problem space, even if a large portion of the
logic is generally valid for the issue of space planning.* While
a certain understanding of floor plan composition is enforced
here, it is a clear example of how spatial configurations can
be translated to geometry and is a primary inspiration for our
own geometric implementation.

Another later attempt at automated space planning by
Autodesk, Project Discover, tackled a more specific problem
with a single site and static set of goals. They employed a
genetic algorithm to effectively consider several compet-
ing design criteria and arrive at a sufficiently provable
“best” option. They conclude, though, with a few caveats:
the stochastic nature of their system means the solution is
only optimal based on the limited input provided. Similarly,
regarding scope, they argue that “some aspects, such as
beauty, cannot be quantified, and thus need to be consid-
ered once the generative design process is complete.”® Here,
composition is thoroughly considered by the genetic model
at the cost of a large degree of control by the designer. But a
suspicion is also called out: if qualitative information cannot
be objectively mapped to a quantity, where do we situate
the machine? This project proposes approximation through
translation, and the implementation follows below.

THREE PHASES OF COMPOSITION PARSING

This project’s reaction to the compositional problem is
implemented as a collection of custom components for
Grasshopper, a visual programming interface for McNeel’s
modeling software Rhino. It does not attempt to develop
a more intelligent version of any of the above algorithms.

BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era

441

=

002 001 {028

oo
001

ok E Ell
006 102
17 it |5 ih
" 00205 L 04945

o -
35 870 (MAX) 14 33

Figure 2. Neighborhood generation based on geometry at left. Program zone preference and quota distribution are superimposed at right, in priority
order from left to right, where green is most preferred and red is least. Note that the lowest priority item has the least placement in the popular

trapezoidal zone.

Instead, effort is focused on reducing a given problem to a
collection of smaller ones that they are sufficiently capable
of solving. (More specifically, a floor plan to a collection of
rooms with egress.) The following section outlines the three
primary phases of this process, internally called composition
parsing, as well as the resultant collection of smaller packing
problems. It concludes with a short note on how these results
can be populated.

The system asks the user to declare a collection of curves
and number values as input. These represent baseline con-
straints in floor plan geometry and programmatic goals. A
desk, for example, is constructed from a rectangle for occu-
pation bounds, the directions it can be accessed from, and a
number for the minimum amount that must be placed. There
is animmediate distinction, however, between objective and
gestural inputs. Some information, like the floor slab profile,
is unchangeable and treated as such by the system. But it
also asks for other information with more flexibility in mind.
When declaring desired circulation, the user is prompted
for multiple axis that traverse the floor plan instead of an
explicit procession represented as a line. Similarly, egress
access to the core is input as regions that must remain unob-
structed; the system will later decide how best to generate
connections between these zones and primary circulation.
This combination of input types gives the system enough
freedom to interpret designer intent without forcing her to
sacrifice precision or limit the solution space to a subset of
geometries (figure 1).

The first phase of composition parsing reconstructs the floor
plan as a handful of discrete neighborhood regions. It starts
by generating a collection of ideal circulation configurations
in a two-step process. First, the axes are fragmented at their
intersections and categorized based on what they connect
(e.g. core to perimeter, circulation to circulation). Second, sev-
eral different heuristics reassemble the segments based on
their adjacency to the perimeter, core, and other segments.
These rule sets are derived from observations of existing
projects, but a single “best” is not yet enforced. Each con-
figuration is then connected to all necessary egress regions,
and this collection of lines is used to slice the floor plate into
patchwork zones. The likely irregular geometry is then fur-
ther fragmented into its most rectangular component parts.

Finally, each collection of circulation paths and zones are
scored based on their “potential” for the set of program items
requested. This is a simple check for correlation between
program size and number against the size and proportion of
generated zones (i.e. a request for several large programs will
lead to a higher score for a configuration with more large
zones). The highest scoring configuration is then passed along
to the next phase. In this way, the system’s first move is to
reduce intent to a compositional read of the user’s request
that is computationally accessible: rectangular islands with
simple topological relationships.

The geometric simplification of the first phase is necessary
for the success of the second: distribution of program items
to each neighborhood. In parallel with the first phase, the
system interprets explicit program quotas with each item’s
attributes like geometry and privacy. Once the first phase
completes, the system lists each neighborhood zone in order
of “preference” for each program item. In another form of
composition parsing, it will then consider both programmed
heuristics (“offices cluster near the core”) and user declared
requirements (“this meeting table cannot sit against the
perimeter”). A phase of horse trading follows, where each
program “bargains” with the others for space in their most
desired zones. Conflicts are resolved with a basic prior-
ity declared by the user for each program at the beginning
of the process. The result of this second phase is an auto-
mated synthesis of floor plan composition and programmatic
affinities (figure 2). Each algorithm responds to earlier gen-
erated geometric representations of user intent, preserving
designer agency.

At the start of the third and final phase, the gestural curves
and numbers input by the user have been translated into a
handful of smaller zones. Each zone is also assigned a subset
of the program requirements to handle. Before population
begins, however, each zone must be further reduced to the
simplest collection of packing problems possible and normal-
ized in some way to allow a uniform application of placement
rules. (Note that the desire for simplicity is outlined in the
above discussion of other space planning algorithms. They
work especially well for small rectangular spaces with a
limited number of items.) The system achieves this standard-
ization by slicing the previously rectangularized zones along

442

Composition Parsing: Office Space Planning and Automation as Translator

Figure 3. Iterative solutions with the same input configurations, from left to right. The user input in between each, noted as a red square, instructs the
system to preserve that region of the solution. This region does not have to correlate with the substructure of neighborhoods and cells.

their narrow axis. The distance between each slice is deter-
mined by the sizes of the remaining items to assign. As each
“cell” of the zone is created, this remaining quota total for
the zone is reduced based on expected population results. At
the end of the slicing process, each neighborhood zone has
been separated into a collection of parallel cells (see second
column of figure 4). A further subset of the program’s quotas
has also been assigned to each cell.

So, before population even begins, Desk Jockey has already
decided the optimal size of each cell and the ability of each
to fit an assigned quantity of program items. Placing each
item is only necessary to confirm fidelity or to represent the
result. Since the system consistently reduces the space plan-
ning problem to simple rectangles, it responds best to a basic
“array along edge” population strategy. The nuanced aspects
of more sophisticated algorithms (e.g. Anderson’s perimeter-
based population strategy) are not necessarily applicable, as
the problem has been simplified to an easy case for each. For
this reason, this research advocates for the computational
reduction of problems, as opposed to computationally robust
or adaptive algorithms. This ideology promises more success-
ful inroads for the qualitative problems of design.

INTERACTIVITY

A second strength of this implementation, largely because
of its reductive approach, is the possibility for greater user
engagement with the design automation. Because the first
phase begins with an interpretation of the floor plan, if it
can also translate user intent into a compatible format for
that interpretation, it can now also allow the user to pro-
vide more sophisticated instruction. One example of this in
the current implementation is in the ability for the user to
“maximize” a certain program request. If a zero is entered at
the start, instead of the minimum requirement expected, it
gets replaced by the maximum number of items that could
possibly fit on the floor plan. The horse-trading algorithm in
the second phase can negotiate the large request. The cell
assignment process in the third phase will also understand
that, even if it can’t place every single item of the maximized
program, its best attempt is what’s being requested.

The system enables more robust types of interaction because
it establishes its own language for the office test fit but does
not enforce how it’s used. The currentimplementation allows
the user to, once a solution is generated, “lock” an arbitrarily
large region and re-compute. The system sees this as a new
request, with the region treated the same as a hole in the
floor, and the program requirements are decreased based
on how many already exist in the region (figure 3). The cur-
rent language is sufficiently verbose to close the gap between
what the user intends and what the algorithms can interpret,
with some caveats explained below.

EVALUATION

Ultimately, the current implementation is not different in
its relationship to the designer than other previously men-
tioned “bookend” algorithms. Each run is monolithic; the
user’s primary interactions are to deliver input and receive
a total result. Its strength lies in its ability to obfuscate that
relationship by interpreting interaction as “normal” input and
by relating new solutions to previous ones. This provides an
illusion of interaction that is sufficiently correlated with the
user’s expectations.

The potential interpretations of the floor plan are also still
largely limited. The “nested reduction” system enforces
a solely hierarchical type of solution. Relational data, like
distance to other programs, can only be considered instan-
taneously on placement. And while evaluation of relational
information or attributes of instantiated programs (e.g.
approximate noise level of desk clusters, shading caused
by perimeter offices) is possible, using that same informa-
tion as criteria for placement is difficult. Still, the current
version delivers consistent results for floor plan geometry
that can be reduced to generally rectangular cells. This is not
dependent on an overall orthogonal or rectangular exterior
profile (figure 4).

This paper outlines the proof-of-concept phase for a more
ambitious and robust project in development by HOK. All rel-
evant code has been released under a free software license
on the company’s public repository.® Current development

BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era 443

B E sy
s "

TF]
<

#5368 853 003 T

583 383 983 483
s og ey ey

AN

Figure 4. Results on three floor plans. Column information, from left to right: geometric input, result of composition parsing, result after population.

444 Composition Parsing: Office Space Planning and Automation as Translator

effort aims to compensate for these shortcomings by com-
pletely atomizing its component parts. Requiring a direct
request for each type of functionality from the designer
necessarily increases their control over the process and
understanding of how it works. The team also plans to
increase the amount of intelligence that can be stored within
each program. Limiting their interpretation to a rectangle
with an orientation makes sense for a simple packing prob-
lem. But more complicated relationships, necessary to solve
contemporary schemes like the agile office (where one desk
is not equivalent to one body), require more information to
be attributed to each program.

CONCLUSION

The paper discussed the inherent restrictions in black box
style approaches to the problem of automated space plan-
ning. Existing algorithms and implementations that address
this problem were studied for their approaches to interactiv-
ity and compositional understanding of the office test fit. An
intermediary computational layer was proposed. This system
translates designer intent and space planning constraints into
a consistent geometric language. With this language estab-
lished, it can synthesize a combination of explicit and gestural
inputs into a network of placement relationships that must
be maintained. In parallel, it also reduces the geometry of a
given floor plan to a collection of smaller, simpler, and gener-
ally rectangular packing problems. The population algorithms
employed can then be much simpler, so long as the relation-
ships are maintained, because the problems are simpler. This
composition-heavy approach promises two primary benefits:
a more generally applicable solution space because of the
reductive attitude taken, and a means for better user interac-
tion so long as intent can be translated into the algorithm’s
geometric language.

ENDNOTES

1 Carl Galioto, “Software That Should Be Unifying the AEC Industry Is Impeding
Progress and Innovation,” Architecture Today (September 2018).

2 Carl Anderson et al., “Augmented Space Panning: Using Procedural Generation
To Automate Desk Layouts,” International Journal of Architectural Computing 16,
no. 2 (2018): 164-177.

3 Andersonetal., 164.

4 Subhajit Das et al., “Space Plan Generator: Rapid Generation & Evaluation
of Floor Plan Design Options to Inform Decision Making” in ACADIA // 2016 -
Posthuman Frontiers: Data, Designers, and Cognitive Machines - Proceedings
of the 36th Annual Conference of the Association for Computer Aided Design in
Architecture (Fargo, ND: ACADIA, 2016), 106-115.

5 Danil Nagy et al., “Project Discover: An Application of Generative Design for
Architectural Space Planning,” in 2017 Prooceedings of the Symposium on
Simulation for Architecture & Urban Design (San Diego: The Society for Modeling
and Simuation International; Simulations Councils, Inc., 2017), 59-66.

6 GitHub, HOKGroup/burolandschafter, “Engine for Automated Space Planning (in
development).” https://github.com/HOKGroup/burolandschafter.

